martes, 8 de octubre de 2013

octubre 08, 2013
MADRID, 8 de octubre.- Los descubridores del bosón de Higgs, Nobel de Física 2013. Peter Higgs y François Englert predijeron la existencia de esta escurridiza partícula, responsable de dar masa a todas las demás y que reafirma el Modelo Estándar de la Física.

Este año no había lugar a dudas. Si no eran ellos, ¿quién podría llevarse el premio? No existía ninguna otra investigación en el campo de la Física que superara estos impresionantes resultados, aunque la tardanza de los miembros de la Real Academia Sueca de las Ciencias en Estocolmo en dar el anuncio -alrededor de una hora y con varios retrasos- hacía pensar que existía alguna duda. Pero no, como todo el mundo esperaba, los «padres» del famoso bosón de Higgs, el físico escocés Peter Higgs y su colega belga François Englert, han ganado el Nobel de Física 2013 por predecir, de forma independiente, la existencia de esta escurridiza partícula que da masa a todas las demás y que reafirma el Modelo Estándar de la Física. Sin su existencia, el Universo no existiría tal y como lo conocemos. Fuera del premio han quedado los físicos de la Organización Europea para la Investigación Nuclear (CERN) que con sus experimentos confirmaron la existencia del bosón, quizás porque la Academia Karolinska tiene como tradición no distinguir a instituciones, sino a personas.

François Englert y Peter Higgs. (Foto: © CERN)

Higgs, de 84 años (Universidad de Edimburgo en Escocia), Englert, de 81 (Universidad Libre de Bruselas) y su colega el físico belga Robert Brout, fallecido en el año 2011, postularon en 1964 la existencia de un bosón popularmente conocido como el de Higgs o «la partícula de Dios», aunque al británico no le gustara el término. Desde entonces, la partícula ha sido buscada sin descanso. Por fin, en julio del pasado año, los físicos de CMS y ATLAS, los dos mayores experimentos del Gran Colisionador de Hadrones (LHC), ubicado en el CERN, cerca de Ginebra, en Suiza, confirmaban que, en efecto, habían encontrado una partícula que coincidía con la descripción. El hallazgo se hizo merecedor del Premio Príncipe de Asturias de Investigación Científica y Técnica 2013 y fue reconocido por la revista Science como la investigación del año.

Higgs, «abrumado»

Entonces, en esa primera presentación, el veterano Higgs no pudo contener las lágrimas. Lo que este físico tímido y sencillo llevaba sosteniendo desde hacía tanto tiempo y que llevaba su nombre se había convertido en una realidad probada. Esta mañana, en cuanto ha conocido que recibía el Nobel, el británico ha admitido sentirse «abrumado». En una declaración divulgada a través de la Universidad de Edimburgo, el investigador también ha querido felicitar a todos los que han trabajado para conseguir este avance y ha manifestado su esperanza de que este «reconocimiento de la ciencia fundamental» ayude a mejorar el «valor de la investigación teórica». Por su parte, Englert confesaba por teléfono estar «muy, muy feliz de ser reconocido» con «un premio extraordinario».

«La relación que debe existir entre teoría y experimento culmina con este premio que supone un gran reconocimiento para la teoría de la física de partículas y que es el fruto de una cooperación científica internacional con sabor europeo», ha dicho el director general del CERN, Rolf Heuer. Por su parte, el científico español Juan Alcaraz - investigador principal del Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)- ha señalado a ABC que aunque el CERN no haya sido premiado, se ha reconocido internacionalemente su trabajo, informa María Teresa Benítez de Lugo desde Ginebra. «Para nosotros es un orgullo», ha explicado el físico.

La teoría de Higgs explica que existe un campo que permea todo el Universo, y las partículas se mueven a través de ese campo igual que peces en el agua. La masa sería precisamente la cantidad de resistencia encontrada por las partículas al moverse por el campo de Higgs. Algunas partículas, como los fotones, no tienen masa y pueden viajar a la velocidad de la luz. Todas las demás (protones, electrones, neutrones...) se mueven más despacio porque se encuentran con esa resistencia e interactúan con las «piezas» mínimas que componen el campo, esto es, los bosones de Higgs.

Cuando colisionan con ellos, las partículas pasan de ser «paquetes de energía» a «paquetes de materia». De esta forma, se crean todos los objetos sólidos, desde las estrellas al más diminuto insecto, pasando, por supuesto, por nosotros mismos.

A por el Universo invisible

La confirmación de la existencia del bosón de Higgs ha requerido la participación de miles de investigadores y una inversión de al menos 5.500 millones de dólares. «Sin embargo, aún son necesarios más experimentos, a través de colisiones, para comprobar sus propiedades con más precisión», advierte Alcaraz. A partir de 2015, cuando será puesto de nuevo en funcionamiento el gran acelerador del CERN, se aumentarán las colisiones y se producirán partículas en grandes cantidades para poder estudiarlas con más detalle.

El bosón de Higgs era el eslabón que faltaba para comprender el origen de la parte visible del Universo, formada por las estrellas y todo lo que está iluminado. Esta parte corresponde a solo el 5% del total por lo que el próximo desafío de la ciencia será estudiar el 95% restante formado por materia y energía oscuras, que no vemos a simple vista, informa Benítez de Lugo. «Con el descubrimiento del bosón de Higgs se ha cerrado una teoría estándar. El próximo paso será el de tratar de entender la materia y la energía oscuras usando el potente acelerador de partículas del CERN porque sabemos que existen y habrá que encontrarlas», ha explicado el científico español.

Aún no está claro a dónde conducirá este descubrimiento en el campo de la Física, considerado uno de los mayores del siglo, pero su impacto es innegable. (J. de Jorge / ABC)

0 comentarios:

Publicar un comentario